
The First Structurally Authenticated Divalent Lanthanide Stannyl Derivative

F. Geoffrey N. Cloke,* Christopher I. Dalby, Peter B. Hitchcock, Helen Karamallakis and Gerard A. Lawless* School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, UK

The reaction between Ybl₂ and K[Sn(CH₂But)₃] affords the diamagnetic ytterbium bis-stannyl derivative [Yb(SnNep₃)₂(thf)₂] 1 (Nep = 2,2-dimethylpropyl and thf = tetrahydrofuran) which has been characterised by multinuclear NMR spectroscopy (119Sn and 171Yb) and X-ray crystallography: reaction of 1 with two equivalents of ArOH (ArOH = 2,6-di-*tert*-butyl-4-methylphenol) or C₅Me₅H results in the elimination of Sn(CH₂But)₃H to afford the known complexes [Yb(OAr)₂(thf)₂] and [Yb(C₅Me₅)₂(thf)₂] respectively whereas the reaction with one equivalent of ArOH or C₅Me₅ results in the formation of the novel mixed ligand complexes [Yb(OAr){Sn(CH₂But)₃}(thf)₂] and [Yb(C₅Me₅){(Sn(CH₂But)₃}(thf)₂].

The chemistry of the +11 oxidation state derivatives of the lanthanides Sm, Eu and Yb has received considerable interest recently due to their unique reactivity, especially as selective reducing agents and in the activation of small molecules.¹ Exploration of the Yb¹I oxidation state has been considerably facilitated by the development, by one of us, of ¹¹¹Yb NMR.² Thus, we were particularly interested in the synthesis of Yb¹I

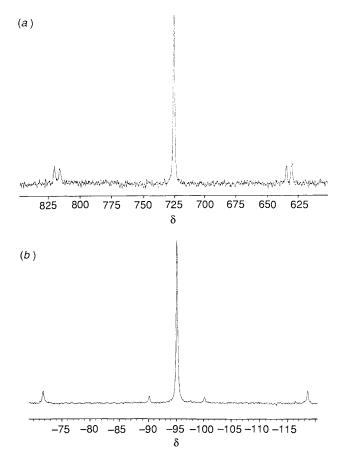

complexes containing bonds between ytterbium and spin active main group elements, both for NMR studies and also for their potential reactivity. Herein we report the first bis-stannyl derivative of a divalent lanthanide, including the first Yb–Sn bond to be structurally characterised and a similarly unique measurement of Yb–Sn coupling constants. Furthermore we also provide a synthetic route to the mixed

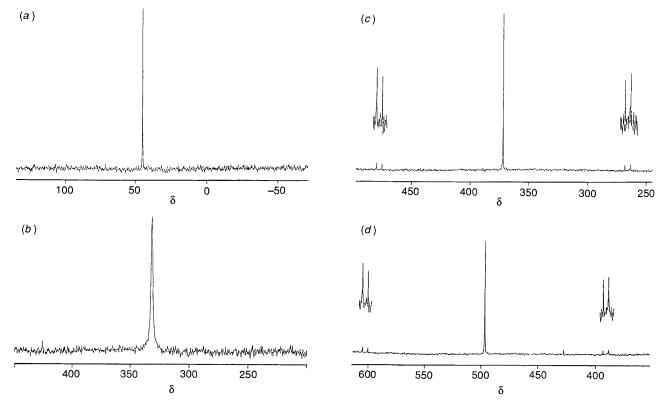
Fig. 1 The X-ray structure of **1**. Selected bond lengths (Å): Yb-Sn, 3.216(1); Yb-O, 2.345(7). Selected bond angles (°): Sn-Yb-Sn', 132.34(3); O-Yb-O', 102.4(2); Sn-Yb-O 106.6(2); Sn-Yb-O', 102.7(2). The molecule lies on a crystallographic twofold rotation axis

ligand derivatives of Yb^{II}. To date, few lanthanide–tin bonds have been reported; the ytterbium(III) complex [Yb(η -C₅H₅)₂(SnPh₃)(thf)₂] is known^{3a} but has not been structurally authenticated, and the only ytterbium(II) complexes, Bu₃SnYbI and Ph₃SnYbI, are ill-characterised.^{3b} The reaction of YbI₂ and K[SnNep₃] (Nep = 2,2-dimethylpropyl) in tetrahydrofuran (thf) affords orange, crystalline [Yb(SnNep₃)₂(thf)₂], 1, in 60% yield after recrystallisation from pentane (see Scheme 1).†

 ^{1}H NMR (C₇D₈, 500.13 MHz, 298 K): δ 3.71 (br s, 8H, thf), 1.40 (br s, 8H, thf), 1.20 [s, 54H, CH₂C(CH₃)₃], 1.14 [s, 12H, CH₂C(CH₃)₃]. ^{13}C NMR ^{1}H (C₇D₈, 125.77 MHz, 298 K): δ 69.2 (thf), 39.55 [CH₂C(CH₃)₃], 34.95 [CH₂C(CH₃)₃], 32.97 [CH₂C(CH₃)₃].

Fig. 2 (a) The 171 Yb NMR spectrum of 1; (b) the 119 Sn NMR spectrum of 1

A single crystal X-ray study⁴‡ of 1 has been carried out and the results are shown in Fig. 1. Noteworthy features of the structure are the pseudo tetrahedral geometry about the Yb atom and the apparently long Yb–Sn bond of 3.2 Å, although the dearth of any precedents in lanthanide chemistry coupled with the lack of reported values for either covalent or van der Waals radii for Yb makes interpretation of this bond length ambiguous. However, we note that the Hf–Sn distance in the Hf^{II} complex [Hf(η -PhMe)₂(SnMe₃)₂] is 2.95 Å,⁵ and Hf^{II} would be expected to be similar in size to Yb^{II}.


The 171 Yb NMR spectrum of 1 in toluene reveals a single resonance at δ 725 with 119 Sn and 117 Sn satellites. Similarly the

‡ *Crystal data*: C₃₈H₈₂O₂Sn₂Yb, M = 981.5, monoclinic, space group C2/c, a = 13.726(6), b = 18.154(7), c = 19.989(8) Å, β = 105.37(3)°, U = 4802.8 ų, Z = 4, D_c = 1.36 g cm⁻³; F(000) = 1984. Monochromated Mo-Kα radiation, λ = 0.71069 Å, μ = 29.9 cm⁻¹.

Data were collected using a crystal $ca.\ 0.5 \times 0.5 \times 0.5$ mm, sealed in a capillary under argon (along with a trace of the mother liquor), on an Enraf-Nonius CAD4 diffractometer in the θ -2 θ mode with $\Delta\theta=(0.8+0.35 \tan\theta)^{\circ}$ and a maximum scan time of one minute. A total of 4231 unique reflections for $2<\theta<25^{\circ}$ and $+h+k\pm 1$, and 1900 reflections with $|F^2|>3\sigma(F^2)$, where $\sigma(F^2)=\{\sigma^2(I)+(0.04I)^2\}^{1/2}\mathrm{Lp}$ ($\mathrm{Lp}=\mathrm{Lorentz}$ polarisation), were used in refinement. A correction (max. 1.33, min. 0.65) was applied for absorption using DIFABS⁴ after isotropic refinement.

The structure was solved by routine heavy-atom methods and non-hydrogen atoms refined anisotropically by full-matrix least-squares. Hydrogen atoms were held fixed at calculated positions with $U_{\rm iso}=1.3~U_{\rm eq}$ for the parent carbon atom. With a weighting scheme of $w=1/\sigma^2(F)$, the final residuals were R=0.036, $R_{\rm w}=0.046$, with a ratio of observations to variables of 10:1, and S=1.4. Programs from the Enraf-Nonius SDP-Plus package were run on a micro Vax II computer. Atomic coordinates, bond lengths and angles and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

 $^{^\}dagger$ To a Schlenk tube containing 100 ml of extremely dry thf and a potassium mirror (0.24 g, 6 mmol) was added all at once solid hexaneopentylditin (1.99 g, 3 mmol) and solid naphthalene (0.748 g, 6 mmol), with stirring. When all the potassium had been consumed, to the resultant deep-green solution of potassium(trineopentylstannyl) was added solid ytterbium diiodide (1.41 g, 3.3 mmol). The resultant deep-brown solution was stirred at room temperature for 2 days, filtered, and the solvent and naphthalene removed under vacuum. Extraction of the residue with n-pentane, filtration, and slow cooling of the filtrate to 0 °C afforded dark-orange crystals of 1 (1.8 g, 60%). Extremely facile loss of thf from 1 precluded meaningful microanalysis.

Fig. 3 The 171 Yb spectra of; (a) [Yb(C₅Me₅)₂(thf)₂]; (b) [Yb(OAr)₂(thf)₂]; (c) [Yb(C₅Me₅){Sn(CH₂Bu¹)₃}(thf)₂]; and (d) [Yb(OAr)₂(CH₂Bu¹)₃](thf)₂]

¹¹⁹Sn spectrum consists of another singlet, at δ –95, with accompanying ¹¹⁷Sn and ¹⁷¹Yb couplings.§

The incipient basicity of the trineopentyltin group in 1 suggests that the latter will afford a wide range of Yb^{II} complexes, by reaction with protic reagents. For example, the addition of two equivalents of either C_5Me_5H [eqn. (1)] or ArOH [eqn. (2)] (where $C_5Me_5H = 1,2,3,4,5$ -pentamethyl-cyclopentadiene and ArOH = 2,6-di-*tert*-butyl-4-methyl-phenol) affords the previously reported [Yb(C_5Me_5)₂(thf)₂]⁶ and [Yb(OAr)₂(thf)₂]⁷ respectively [by ¹⁷¹Yb NMR, see Fig. 3(a) and (b)]¶ with the concomitant generation of two equivalents of SnNep₃H. The potential for the synthesis of mixed ligand complexes which retain one trineopentyltin group is demonstrated by NMR tube reactions between 1 and only one equivalent of either C_5Me_5H , [eqn. (3)] or ArOH [eqn. (4)]. The ¹⁷¹Yb NMR spectrum for reaction (3) reveals a new resonance at δ 372|| intermediate in

 $1 + 2 C_5 Me_5 H \rightarrow [Yb(C_5 Me_5)_2 (thf)_2] + 2 Sn(CH_2 Bu^t)_3 H$ (1)

 $1 + 2 \text{ ArOH} \rightarrow [\text{Yb}(\text{OAr})_2(\text{thf})_2] + 2 \text{ Sn}(\text{CH}_2\text{But})_3\text{H}$ (2)

 $1 + 1 C_5 Me_5 H \rightarrow [Yb(C_5 Me_5) \{Sn(CH_2 Bu^{\dagger})_3\}_3 (thf)_2] + Sn(CH_2 Bu^{\dagger})_3 H$ (3)

1 + 1 ArOH → [Yb(OAr){Sn(CH₂Bu^t)₃}₃(thf)₂] + Sn(CH₂Bu^t)₃H (4)

 \parallel ^{171}Yb NMR {¹H} (C₇D₈, 43.77 MHz, 298 K): δ 372 [J (Yb– $^{119}\text{Sn})$ 9479, J (Yb– $^{117}\text{Sn})$ 9058 Hz]; δ 497 [J (Yb– $^{119}\text{Sn})$ 8783, J (Yb– $^{117}\text{Sn})$ 8396 Hz].

chemical shift between those of 1 and [Yb(C_5Me_5)₂2thf], and similarly that for reaction (4) exhibits a new resonance at δ 497 \parallel intermediate between those for 1 and [Yb(OAr)₂-(thf)₂]. The corresponding ¹¹⁹Sn spectra exhibit only ¹*J* (Sn-¹⁷¹Yb) couplings with no ²*J* (Sn-¹¹⁷Sn) present, thus further confirming the formation of the mono-stannyl complexes [Yb(C_5Me_5){Sn(CH₂Bu¹)₃}(thf)₂] and [Yb(OAr){Sn-(CH₂Bu¹)₃}(thf)₂]. Further characterisation of the latter and other related derivatives, together with the preparation of the lead and silicon analogues of 1, are in progress.

We thank the SERC for an Earmarked studentship (C. I. D.), and Dr D. M. Anderson for experimental assistance.

Received, 11th February 1991; Com. 1/00630D

References

- H. B. Kagan and J. L. Namy, *Tetrahedron*, 1986, 42, 6573; W. J. Evans, *Polyhedron*, 1987, 6, 803, and references cited therein; C. J. Burns and R. A. Andersen, *J. Am. Chem. Soc.*, 1987, 109, 941.
- 2 A. G. Avent, M. A. Edelman, M. F. Lappert and G. A. Lawless, J. Am. Chem. Soc., 1989, 111, 3423.
- 3 (a) H. Schumann and M. Cygon, J. Organomet. Chem., 1978, 144, C43; (b) L. N. Bochkarev, M. N. Kholodilova, S. F. Zhiltsov, T. V. Guseva, M. N. Bochkarev and G. Razuvaev, A. Zh. Obshch. Khim., 1986, 56(3), 723.
- N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.
 F. G. N. Cloke, K. P. Cox, M. L. H. Green, J. Bashkin and C. K. Prout, J. Chem. Soc., Chem. Commun., 1981, 117.
- 6 P. L. Watson, J. Chem. Soc., Chem. Commun., 1980, 652.
- 7 G. B. Deacon, P. B. Hitchcock, S. A. Holmes, M. F. Lappert, P. MacKinnon and R. H. Newnham, J. Chem. Soc., Chem. Commun., 1989, 93.

 $^{\ ^{171}}Yb\ NMR\ ^{1}H\ (C_7D_8,\ 43.77\ MHz,\ 298\ K):\ \delta\ 725\ [J\ (Yb^{-119}Sn)\ 8627,\ J\ (Yb^{-117}Sn)\ 8254\ Hz].\ ^{119}Sn\ NMR\ ^{1}H\ (C_7D_8,\ 93.27\ MHz,\ 298\ K):\ \delta\ -95\ [J\ (Sn^{-171}Yb)\ 8627,\ ^2J\ (Sn^{-117}Sn)\ 1872\ Hz].$